An Out-of-Order RISC-V 32IM Processor with
Explicit Register Renaming

Yugal Kithany, Arpan Swaroop, Om Padmani
University of Illinois Urbana-Champaign

Abstract—This paper presents the design and implementation
of an out-of-order (O00O) microprocessor targeting the RISC-
V RV32IM ISA. The processor adopts an Explicit Register
Renaming (ERR) microarchitecture to maximize instruction-level
parallelism while avoiding centralized Common Data Bus (CDB)
contention common in Tomasulo-style designs; throughout this
paper, the term CDB is used to refer generically to result
broadcast mechanisms, although the implementation employs
per—functional-unit result buses rather than a single shared bus.
Support for integer, multiply/divide, control, and memory in-
structions is combined with several advanced features, including
instruction and data prefetching, a G-share branch predictor with
a Branch Target Buffer (BTB), and a split load-store queue. The
design was developed incrementally and validated using directed
tests, random instruction streams, and benchmark execution.
Experimental results show measurable IPC improvements on
memory- and control-intensive workloads, while also exposing
important tradeoffs in area, critical path, and predictor accuracy.

I. INTRODUCTION

Out-of-order execution is fundamental to modern high-
performance processors, enabling latency tolerance and in-
creased instruction-level parallelism (ILP). This project im-
plements an OoO RISC-V RV32IM processor intended as a
pedagogical yet realistic exploration of contemporary microar-
chitectural techniques. The design centers on Explicit Register
Renaming (ERR), which decouples architectural and physical
registers while avoiding scalability issues associated with a
centralized CDB. The primary objective is correctness and
performance across the full RV32IM ISA, followed by the
evaluation of selected advanced microarchitectural optimiza-
tions.

II. PROCESSOR OVERVIEW

The processor implements a fully out-of-order pipeline with
register renaming, dynamic scheduling, and in-order retire-
ment. It supports the complete RV32IM ISA, including integer
arithmetic, multiplication and division, memory operations,
and control-flow instructions. Development was structured
across three checkpoints to ensure functional correctness be-
fore introducing advanced features.

Checkpoint 1 focused on instruction delivery, including
the fetch stage, instruction cache, cache-line adapter, and
instruction queue. Checkpoint 2 introduced the core OoO
mechanisms, including rename, reservation stations, execution
units, and the Reorder Buffer (ROB). Checkpoint 3 completed
the design by adding memory and control support, including
the load-store queue and branch handling logic. This staged
approach reduced integration risk and allowed systematic

validation at each step.
A high-level block diagram of the ERR-based datapath is
shown in Appendix Figure 3.

III. MICROARCHITECTURAL DESIGN
A. RTL-Level Implementation Details

At the top level, the CPU integrates fetch, rename/dispatch,
execution, and retirement using explicit valid/ready signaling.
Rather than enforcing fixed pipeline stages, modules commu-
nicate through queues and reservation stations, allowing fetch
and execution to proceed independently when downstream
pressure exists. This decoupling is visible in the fetch logic,
which maintains its own enqueue/dequeue control and can stall
independently of rename or execution.

The fetch unit implements an instruction queue with head-
/tail pointers and full/empty detection. It supports speculative
fetch using both a BTB and a G-share predictor. BTB hit
qualification is gated by predictor validity, and mispredictions
trigger explicit flush control that resets the instruction queue
and suppresses enqueues during recovery. The fetch logic also
tracks memory wait state and includes simple performance
counters and latency histograms to quantify instruction fetch
response time under memory stalls.

Branch prediction state is updated using non-speculative
branch outcomes provided by the ROB, ensuring predictor
correctness under rollback. G-share prediction outputs both
direction and index metadata, which are later consumed dur-
ing commit for table updates. This design choice simplifies
recovery logic by avoiding speculative predictor writes.

Reservation stations are partitioned by functional unit type
(ALU, multiply, divide, control, and load/store), each imple-
mented as a fixed-size array of entries. Each entry stores
decoded instruction metadata, destination physical register
ID, architectural destination, source physical register tags,
readiness bits, immediate flags, and ROB index. Dispatch
logic selects the appropriate station based on opcode and funct
fields, ensuring structural hazards are localized per functional
unit.

Operand readiness is resolved via explicit RAT update
broadcasts. The reservation station listens to up to five concur-
rent physical register completions, comparing broadcast tags
against stored source tags and marking operands ready when
matches occur. Issue logic selects ready entries only when the
corresponding functional unit signals availability, preserving
correctness while enabling limited out-of-order execution.
Commit logic retires instructions strictly in order via the ROB,

and physical registers are reclaimed only after architectural
state is guaranteed precise, enabling reliable recovery from
branch mispredictions.

B. Design Rationale

Several architectural choices were driven by scalability,
correctness, and implementation complexity. Explicit Register
Renaming (ERR) was selected over Tomasulo-style renaming
to avoid centralized Common Data Bus (CDB) bottlenecks
and excessive multi-ported structures. By allocating dedicated
result buses per functional unit, the design reduces wakeup
latency at the cost of increased area, a tradeoff deemed ac-
ceptable for improving IPC and simplifying scheduling logic.

Early integration of the instruction cache and cache-line
adapter was a deliberate design choice to minimize late-stage
integration risk. This allowed memory-related corner cases
to be identified early and reduced coupling between fetch
and downstream pipeline stages. Modular cache-line adapter
design also enabled later experimentation with instruction and
data prefetchers.

C. Fetch and Instruction Delivery

The fetch stage interfaces with a DRAM model through
an instruction cache and a modular cache-line adapter that
supports burst accesses. A parameterizable circular instruction
queue buffers fetched instructions and decouples fetch from
downstream pipeline stages. The queue design includes head
and tail pointers with wraparound tracking to correctly handle
full and empty conditions.

D. Rename, Dispatch, and Scheduling

Instructions are renamed and dispatched using an ERR
scheme. Destination registers are allocated from a free list
and mapped via a Register Alias Table (RAT). Instructions
are placed into reservation stations associated with specific
functional units. Separate reservation stations per functional
unit were chosen to simplify issue logic and reduce arbitration
complexity. This design improves clarity and correctness but
increases the number of structures that must be maintained.
E. Execution and Writeback

The execution stage includes ALU/CMP, multiply, divide,
control, and load/store functional units. Synopsys-provided se-
quential multiply/divide IPs were integrated to reduce critical-
path delay and improve timing closure. An early implemen-
tation challenge involved handling divide-by-zero behavior,
which required explicit exception handling to maintain archi-
tectural correctness.

Each functional unit broadcasts results on a dedicated result
bus, reducing structural hazards during writeback. While area-
intensive due to the required read/write ports, this approach
eliminates result serialization and improves wakeup respon-
siveness.

F. Reorder Buffer and Retirement

The ROB enforces in-order retirement and maintains precise
state. A Retirement RAT (RRAT) tracks the last committed
architectural state, enabling recovery from mis-speculation.
Physical registers freed at commit are returned to the free list.

Maintaining both RAT and RRAT was critical for correctly
handling control-flow instructions and future branch recovery
support.

G. Reorder Buffer Organization

The processor employs a centralized reorder buffer (ROB)
with 16 entries to enforce in-order retirement and precise
architectural state. Each ROB entry tracks destination archi-
tectural and physical registers, completion status, and control-
flow metadata for branch instructions. Execution units signal
instruction completion out of order via ROB indices, while
retirement proceeds strictly in program order from the head of
the ROB. For branch instructions, the ROB records prediction
metadata at dispatch and performs non-speculative updates to
the branch predictor structures at commit.

The core is single-issue, allowing at most one instruction
to be renamed and dispatched per cycle, subject to reservation
station and ROB availability. Reservation stations are statically
partitioned by functional unit, with completion signaled via
dedicated result buses.

IV. MEMORY AND CONTROL SUPPORT
A. Load-Store Queue

A split load-store queue allows loads to execute out of order
with respect to stores, subject to memory ordering constraints.
Stores are prioritized when ready and at the head of the ROB,
while independent younger loads may bypass stalled stores.
This design improves memory-level parallelism at the expense
of increased queue logic complexity.

B. Control Flow Handling

Control-flow instructions, including conditional branches
and jumps, are executed using a dedicated control functional
unit. In the baseline configuration used during early develop-
ment checkpoints, branches were statically predicted as not
taken, and any misprediction triggered a pipeline flush and re-
covery using the reorder buffer to restore precise architectural
state. This baseline design served as a correctness reference
and enabled early validation of branch resolution and recovery
logic.

In the final integrated design, static prediction is superseded
by the dynamic branch prediction mechanisms described in
Section V.D. Speculative fetch and control-flow redirection
are enabled only when dynamic prediction is active, and all
performance results reported in this paper reflect the use of
the G-share predictor and Branch Target Buffer (BTB) unless
otherwise stated.

V. ADVANCED FEATURES
A. Implementation Notes

From an RTL perspective, advanced features were integrated
incrementally to minimize destabilization of the core pipeline.
Prefetchers and branch predictors interface with fetch through
narrow, well-defined control signals, allowing them to be
enabled or disabled without modifying core execution logic.
Predictor state is updated at commit rather than at execute
time, simplifying correctness under speculation.

B. Next-Line Instruction Prefetcher

The next-line prefetcher was introduced to reduce instruc-
tion fetch stalls caused by compulsory and capacity misses.
Positioned between the fetch stage and instruction cache, it
speculatively requests a future cache line (PC + offset) when
the instruction queue is not full. A key design challenge
was ensuring that prefetch requests did not block demand
requests; this was addressed by temporarily buffering memory
responses until both requests completed. Measured accuracy
of approximately 82% led to reduced average instruction fetch
latency on sequential workloads, though increased delay was
observed due to imperfect prediction.

C. Stride Data Prefetcher

A stride-based data prefetcher was explored to accelerate
workloads with regular memory access patterns, such as
mergesort. While functionally correct, the prefetcher suffered
from low accuracy (34%), causing unnecessary memory
traffic and increased AMAT. Attempts to tune the base stride
and update policy did not sufficiently improve behavior, and
the feature was excluded from the final integrated design.
This highlighted the importance of prefetch accuracy over
aggressiveness.

D. G-share Branch Predictor with BTB

The processor employs a dynamic branch prediction mecha-
nism that combines a G-share direction predictor with a direct-
mapped Branch Target Buffer (BTB) to enable speculative
instruction fetch. The G-share predictor uses a global history
register (GHR) and a pattern history table (PHT) composed
of 2-bit saturating counters, indexed by the XOR of selected
program counter bits and the global history. The BTB provides
speculative target addresses for taken branches and is indexed
independently using the branch program counter.

During instruction fetch, the BTB and G-share predictor are
accessed in parallel. A BTB hit supplies a predicted target
address, while the G-share predictor provides a taken/not-
taken decision. Speculative redirection of the fetch stream
occurs only when both the BTB reports a valid entry and
the G-share predictor predicts the branch as taken; otherwise,
fetch proceeds along the sequential path. This gating prevents
redirection on direction-only predictions without a valid target.

To ensure correctness under speculation, predictor structures
are updated non-speculatively at commit. For each branch
instruction, prediction metadata—including the G-share pre-
diction outcome, pattern history table index, and BTB hit
and target information—is recorded in the reorder buffer at
dispatch. When the branch reaches the head of the reorder
buffer and its actual outcome is known, the predictor tables are
updated using the recorded metadata. The predictor structures
themselves (BTB, BTB valid bits, and PHT) are implemented
as dedicated SRAM arrays and are not checkpointed or mod-
ified speculatively.

Experimental results indicate that while the G-share pre-
dictor achieves high direction prediction accuracy in isola-
tion, overall speculative effectiveness is frequently limited by
BTB coverage. Workloads with regular control flow benefit

from high BTB hit rates, whereas applications with indirect
branches or infrequent branch reuse experience reduced spec-
ulative gains due to BTB misses. These observations highlight
the importance of balanced direction prediction accuracy and
target prediction coverage, and motivate future extensions such
as increased BTB capacity, associativity, or the addition of a
return address stack (RAS).

E. Split Load-Store Queue

The split load-store queue improves memory-level paral-
lelism by allowing loads to bypass older, unresolved stores
when safe. Loads are issued out of order based on readiness
and relative age, while stores execute only when at the ROB
head. This design improved average load latency and IPC
for memory-intensive workloads but increased critical-path
complexity due to additional comparison logic.

VI. EVALUATION METHODOLOGY

Correctness was verified using directed unit tests, random
instruction streams, and benchmark execution with RVFI
and Spike reference logs. Performance was evaluated using
Coremark, FFT, mergesort, and AES/SHA workloads. IPC,
execution latency, cache wait times, and predictor accuracy
were collected via performance counters and post-processing
scripts.

VII. RESULTS

IPC vs IPC Speedup

[
~®- IPC Speedup %

04 03905

03730

IPC Speedup (%)

Coremark AES SHA

Benchmark

Fig. 1: IPC and IPC speedup with BTB
prediction.

+ G-share branch

Delay vs Delay Decrease

Delay ()
~@- Delay Decrease %

4000
3803.2 35

3000

2000

Delay (microseconds)
Delay Decrease (%)

1000

4.70%

Coremari K Mergesort FFT
Benchmark

AES SHA

Fig. 2: Execution delay and delay reduction with BTB + G-
share branch prediction.

The ERR-based OoO core demonstrates consistent IPC
improvements over an in-order baseline when sufficient

instruction-level parallelism is present. Memory-intensive
workloads benefit from reduced load latency due to the split
load-store queue, while loop-heavy programs see gains from
speculative execution enabled by branch prediction.

TABLE I: Baseline Core Performance

Benchmark IPC Delay (us)
Coremark 0.2528 1845.12
Mergesort 0.3269 2284.56
FFT 0.3173 2594.53
AES/SHA 0.2618 3990.69

TABLE II: Performance with BTB and G-share Branch Pre-
diction

Benchmark IPC Delay (us) IPC Speedup Delay Reduction
Coremark 0.3601 1287.49 42.44% 30.22%
Mergesort 0.3905 1900.96 19.46% 16.79%
FFT 0.3730 2192.96 17.55% 15.48%
AES/SHA 0.2730 3803.17 4.28% 4.70%

TABLE III: Branch Prediction Performance

From an implementation perspective, early performance
instrumentation proved invaluable for identifying bottlenecks
and guiding design decisions. However, limited synthesis
support for the baseline core constrained direct area compar-
isons. Future iterations would benefit from deeper integration
of memory-side optimizations, reduced structural duplication,
and more aggressive sharing of predictor and scheduling
resources.

IX. CONCLUSION

This work demonstrates a complete OoO RISC-V RV32IM
processor using Explicit Register Renaming and several mod-
ern microarchitectural enhancements. The design balances
performance, complexity, and correctness, and serves as a
practical study of OoO execution tradeoffs. Future work in-
cludes improving BTB coverage, integrating a return address
stack, refining prefetch accuracy, and reducing area through
more aggressive resource sharing.

REFERENCES

[1] RISC-V Foundation, ‘The RISC-V Instruction Set Manual,” 2019.

[2] R. Tomasulo, ‘An Efficient Algorithm for Exploiting Multiple Arithmetic
Units,” IBM JRD, 1967.

[3] EEMBC, “CoreMark Benchmark,” 2023.

APPENDIX A

Benchmark G-share Acc. (%) Speculative Acc. (%) BTB Hit Rate (%)
Coremark 87.82 77.55 49.93
Mergesort 77.38 68.14 44.49
FFT 99.04 64.76 78.26
AES/SHA 95.72 18.74 27.09

RTL AND EVALUATION DETAILS
This appendix provides supplementary RTL-level infor-

TABLE IV: Impact of Split Load-Store Queue

Metric
IPC Improvement (%)
Avg. Load Time Reduction (%)

Coremark_im Mergesort
1.21 3.26
11.72 20.91

Instruction prefetching reduces fetch-related stalls on se-
quential code, though imperfect accuracy introduces additional
delay. Branch prediction results show high G-share accuracy
in isolation, but overall speculative effectiveness is constrained
by BTB miss rate. These results highlight the importance of
balanced predictor design.

Overall performance improvements are workload-
dependent, emphasizing that microarchitectural optimizations
must be carefully matched to application behavior.

VIII. LESSONS LEARNED AND LIMITATIONS

Several important insights emerged during the design and
evaluation process. First, architectural scalability must be
considered early; while multiple CDBs improve wakeup la-
tency, they significantly increase area and routing complexity.
Second, predictor accuracy is more critical than predictor
aggressiveness, as demonstrated by the stride prefetcher de-
grading performance despite additional hardware.

The branch prediction subsystem revealed that BTB capac-
ity and organization can dominate speculative effectiveness,
even when the underlying direction predictor performs well.
Additionally, features such as a return address stack (RAS) are
often more impactful than general-purpose BTBs for common
control-flow patterns in real software.

mation and additional evaluation artifacts that support the
architectural discussion in the main body of the paper. The
material here is included for completeness and reference.

Fig. 3: RTL block-level overview of the out-of-order core

