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Abstract—Ray tracing simulates light by casting rays through
pixels and determining their interactions with 3D triangle meshes.
While realistic, ray tracing has a significant computational cost,
especially in complex scenes with millions of triangles. This
project presents a hardware accelerator for the Ray-Triangle
intersection test, built on a RISC-V core. Using a Finite State
Machine and floating-point units for parallel computation, the
design improves performance by over 70% while significantly
reducing energy consumption.

I. BACKGROUND

Ray tracing, unlike rasterization, simulates the physical
behavior of light by casting rays from the camera into the
scene. Each ray travels through a pixel on the screen and
determines intersections with objects. If it hits an object, the
ray gathers lighting information—such as diffuse reflection,
specular reflection, refraction, and global illumination—and
computes the final color for that pixel [1]. In modern computer
graphics, an object is made up of multiple triangle meshes, and
assembling a seemingly solid figure from triangle “building
blocks” is the most fundamental process in 3D computer
graphics [2].

While Ray Tracing produces realistic renderings compared
with its old rasterization counterpart, the computational cost
associated with this realism is significantly higher. In the
most naive approach, each ray generated must be tested
against all objects (in this case, triangle meshes) in the scene,
unlike for rasterization [3]. For many scenes, the amount of
meshes is astronomical. For example, the Moana Island scene
in the reference contains over 146 million unique triangles
[4]. Bounding Volume Hierarchy, which cuts down triangle
searching and traversal cost from O(n) to O(log(n)), is one
of many techniques that could reduce compute cost[5]. This
project aims to build an accelerator that enhances the compute
speed of this ray-triangle intersection. An open-source RI5CY:
RISC-V core is utilized as the base upon which the accelerator
is integrated [6], and validation and modeling of the module
uses the VCS toolchain. Since most calculations are floating-
point operations, the selected core needed to have fpNew
integration, an open-source project, for floating-point operation
calculation [7].

II. METHODOLOGY

The Ray-Triangle Intersection algorithm, shown in Figure
1, is described as follows. The input is 3 points representing
the triangle in 3D space, and a point and vector representing
the light ray. This process is divided into two stages: the ray-

plane intersection phase and the barycentric coordinate phase.
The split is necessary because if the ray does not intersect the
plane containing the triangle, it cannot intersect the triangle
itself.

Fig. 1: Control Flow of Enhanced Architecture.

In the second phase, the intersection point is also required
when checking if the point is within the triangle by calculating
the barycentric coordinates. Once the normal vector of the
triangular plane is computed, the distance of intersection from
the ray origin to the plane is calculated. If the intersection



distance is negative, there are no intersections with the plane,
let alone the triangle, so an early exit is allowed. In the case of
an intersection, the point is calculated. The next step is inverse
triangle mapping, which derives the barycentric coordinates
of each vertex of the triangle, which states how close to
each of the three vertices the point in question is. The key
point of the number is that they sum to 1, and any negative
number indicates that the point lies on the opposite side of the
triangle, signifying that it is not contained within it. [8] These
two properties can determine whether the point is within the
triangle and, thus, if the ray intersects with the triangle [9].

The hardware acceleration is accomplished by creating a
module with an FSM closely following the above algorithm
with minimum floating point computational units required to
enhance parallelized derivations. There are 26 states, each
corresponding to a calculation in Figure 1. The optimal
floating-point hardware configuration was determined to be
6 FP multipliers, 3 FP dividers, and 1FP comparer. Since all
instructions are vector operations in a 3D environment, most
stages are highly parallelized with high throughput.

Two custom instructions are required to enable communi-
cation between the processor and accelerator. The first, RTI.S,
starts the computation on the accelerator by using an unused
opcode from the original ISA, with funct7, rs1, and rs2 left
empty and rd holding the result. The second instruction,
RTILD.S, loads the first 15 floating-point numbers from a
specific memory address into the accelerator with the same
opcode as RTI.S. These two instructions form an interface for
the processor to interact with the accelerator.

III. RESULTS

The results are shown in the three graphs on the left. For the
clock cycle comparison, a built-in Verilator testbench running
a custom program with one iteration of the algorithm was used
to compute the baseline cycles. The accelerated clock cycle
count was derived using a program counter in Verdi running
a similar program using our custom extension instead. For the
Area comparison, the baseline was computed using 90 kGE
from the core documentation [6] and a FreePDK area estimate
of 0.798 µm2 per kGE [10]. The accelerated area was the result
of Synopsys DC. For the Power comparison, the baseline was
computed from a research paper that benchmarked RI5CY
[11]. The accelerated power was computed by adding that
value to the power estimate of our module from Synopsys
DC. The total energy was computed by multiplying the av-
erage power of both configs and the clock cycles required to
compute.

• Performance: 70.8% reduction in clock cycles (Verila-
tor/Verdi).

• Area: Increase due to floating point units (Synopsys DC).
• Energy: 69.2% energy improvement despite higher area.

Fig. 2: Performance and power comparison of baseline vs.
accelerated core.

IV. CONCLUSION

In conclusion, the Ray-Tracing accelerator successfully ac-
celerates the ray-triangle intersection part of the rendering
process. By carefully partitioning the intersection algorithm, it
achieves a performance improvement of 70.8% and an energy
usage improvement of 69.2% with constant power consump-
tion. However, our area was notably impacted, increasing
several orders of magnitude. Because the baseline core was
not natively synthesizable with Synopsys DC due to its open-
source background and age, this area comparison may distort
the actual area impact.

Potential improvements to this design mostly involve the
input registers; enabling the user to use the built-in FP registers
and dynamically choosing which registers are used as inputs
could avoid some redundant memory operations in actual use.
Processing in memory via some special address space and I/O
could also greatly improve the accelerator’s utility.

Some area-increasing flaws to be addressed in future it-



erations of the design are replacing internal flip-flops with
SRAM, reducing the number of scratchpad registers to the
mathematical minimum required to execute the algorithm, and
reducing the number of FP-Division units to 1 as they are
particularly area-intensive.
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[11] R. Núñez-Prieto et al., “RisCO2,” Micromachines, vol. 14, 2023.
[12] Y. Kithany, “RTAccelerator,” GitHub. https://github.com/YugalKithany/

RTAccelerator


