Yugal Kithany

Work in Progress: My favorite player genre is holding midfielder, specifically the tempo-controllers / press-breaking archetype (Busquets). I enjoy analyzing rest defenses, and watching Pedri-esque players dismantle them. This leads me to my current project: Graph Network Analysis on games using ML β€” predicting a team's pass network before they score, so teams can defend better regardless of β€œon paper” formation. Inspired by this video.

πŸ“

Research Progress

βœ“
Find football match data (2018 season + WC)
βœ“
Build network analysis pipeline
Train ML model for pass prediction leading to scoring opportunity (need better GPU)
Test on La Liga this season
βœ“
Create FE for interactive visualizations with some LLMs
Findings write-up

Barcelona's passing networks 2018

pass_network_analysis.py
# Football Pass Network Analysis
    import pandas as pd
    import networkx as nx
    from sklearn.ensemble import RandomForestClassifier

    def analyze_pass_network(match_data):
        """Predict team's pass network before scoring"""
        
        # Create network graph from pass data
        G = nx.DiGraph()
        for pass_event in match_data:
            G.add_edge(pass_event['from_player'], 
                    pass_event['to_player'],
                    weight=1)
        
        # Extract network features
        features = extract_network_features(G)
        
        return predict_scoring_pattern(features)

    # Load match data from figshare dataset
    df = pd.read_csv('soccer_matches.csv')
    results = analyze_pass_network(df)

πŸ’¬
Chatbot

πŸ€–

How can I help you?

Some Neat Writeup

Yugal Kithany
Football Fan

Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

1. Introduction

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.

2. Methodology

Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.

f(x) = βˆ‘i=1n wi Γ— xi + Ξ²

3. Results and Analysis

Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.

4. Conclusion

Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.

References

[1] Pappalardo, Luca; Massucco, Emanuele (2019). Soccer match event dataset. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.4415000.